We present a comprehensive study on chain of thought style prompting for text-to-SQL parsing.

Exploring Chain-of-Thought Style Prompting for Text-to-SQL

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, Huan Sun

Chain of Thought Style Prompting Methods for Text-to-SQL Parsing

Model Input (API Doc Format)

SQLite SQL tables, with their properties:
#
allergy_type (allergy, allergytype)
has_allergy (stuid, allergy)
student (stuid, Iname, fname, age, sex, major, advisor, city_code)
#
Show first name, last name, age for all female students. Their sex is F.
Expected Model Output with Different Prompting Methods

Single-Pass Prompting	Iterative Prompting			
A. Chain-of-Thought	B. Least-to-Most Prompting			
# This query chooses the records from the student table, followed by a WHERE clause that selects records where the sex column is equal to F. It then selects the fname, Iname, and age columns	Problem Reduction: # To answer the question "Show first name, last name, age for all female students. Their			
# Thus, the answer for the question is: Show first name, last name, age for all female students. Their sex is F. SELECT fname, lname, age FROM student WHERE sex = 'F'	sex is F.", we need to know: "Show first name, last name, age for all students."			

C. QDecomp (Ours)

1. Show first name, last name, age for all students. 2. Show first name, last name, age for all female students. Their sex is F.

Thus, the answer for the question is: Show first name, last name, age for all female students. Their sex is F.

SELECT fname, lname, age FROM student WHERE sex = 'F'

D. QDecomp + InterCOL (Ours)

Show first name, last name, age for all students.
SQL table (column): student (fname, lname, age)
Show first name, last name, age for all female students. Their sex is F.
SQL table (column): student (sex)

Thus, the answer for the question is: Show first name, last name, age for all female students. Their sex is F.

SELECT fname, lname, age FROM student WHERE sex = 'F'

Problem Solving:

<Model Input>

Q: Show first name, last name, age for all students.

age for all female students. Their

<Model Input>

sex is F.

LLM

Summary of Experiments and Results

Experimental Setup

A: SELECT fname, lname,

age FROM student

- Large Language Model: Codex (01/2023 03/2023)
- Datasets: Spider, Spider-Realistic, GeoQuery, IMDB, Yelp
- Evaluation Metrics: Test-Suite Accuracy, Execution Accuracy

Results

- What matters for applying CoT prompting to text-to-SQL parsing?
 - Iterative prompting (e.g. least-to-most) may not be necessary
 - Detailed reasoning steps may lead to error propagation
- How to test and design new prompting methods for text-to-SQL parsing?
 - Prompting methods are sensitive to *in-context examples selection* strategies
 - The format and number of in-context examples may not change the relative performance significantly

Method	Spider Dev				Spider Realistic	
	Easy	Medium	Hard	Extra Hard	Overall TS (Overall EX)	Overall TS (Overall EX)
Standard Chain-of-Thought Least-to-Most Least-to-Most (G3)	86.8 73.9 88.1 80.3	65.3 64.5 68.7 64.6	50.3 44.6 52.9 52.8	36.0 23.4 39.5 <u>45.3</u>	$\begin{array}{c} 63.2 \pm 2.51 \ (68.7 \pm 4.08) \\ 56.8 \pm 5.83 \ (53.9 \pm 7.21) \\ 66.0 \pm 2.48 \ (68.9 \pm 3.44) \\ 63.3 \pm 1.95 \ (\underline{73.8} \pm 1.72) \end{array}$	$51.0 \pm 4.29 \ (62.5 \pm 4.01) \\ 50.3 \pm 4.94 \ (53.4 \pm 9.19) \\ 55.0 \pm 2.51 \ (\underline{63.3} \pm 2.73) \\ \underline{-*}$
QDecomp + InterCOL + InterCOL (G3)	89.8 <u>89.6</u> 88.7	<u>71.3</u> 74.1 71.1	<u>53.1</u> 52.4 56.8	38.6 38.1 45.7	$\begin{array}{l} 67.4 \pm 1.89 \ (70.7 \pm 2.80) \\ \underline{68.4} \pm 2.05 \ (69.7 \pm 5.82) \\ 68.8 \pm 1.16 \ (78.2 \pm 1.07) \end{array}$	$\frac{55.8}{56.5} \pm 2.01 \ (65.8 \pm 2.29) \\ \frac{(63.3 \pm 4.19)}{-*}$

	GeoQuery	IMDB	Yelp	MacroAvg
Standard	60.99	73.28	45.31	59.86
Least-to-Most	60.99	58.78	36.72	52.16
QDecomp	64.84	77.86	48.44	63.71
+ InterCOL	75.82	73.28	49.22	66.11