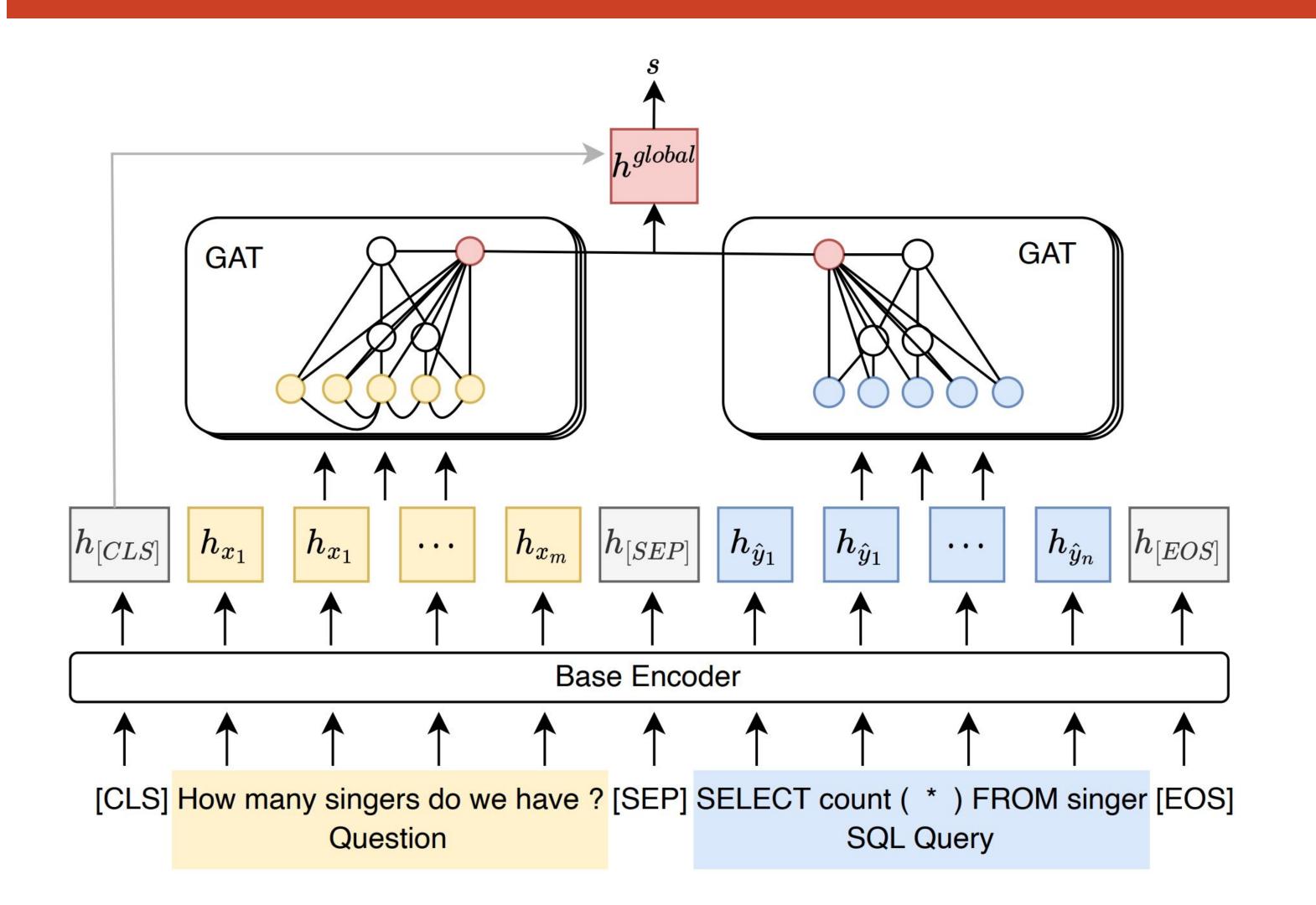

Error Detection for Text-to-SQL Semantic Parsing

Shijie Chen, Ziru Chen, Huan Sun, Yu Su

The Ohio State University

Overview


Task Formulation

• Given a natural language question and a SQL query predicted by a text-to-SQL parser, the error detection model estimates the probability of event "the SQL query is correct."

Contributions

- We propose the first generalizable and parser-independent error detection model for text-to-SQL parsing that is effective on multiple tasks and different parser designs without any task-specific adaptation.
- Our evaluations show that the proposed error detection model outperforms
 parser-dependent uncertainty metrics and could maintain its high performance under
 cross-parser evaluation settings.
- We show through simulated interactions that our error detector could improve the efficiency and usefulness of interactive text-to-SQL parsing systems.

Parser-Independent Error Detector

Data Collection

- Motivation: We consider two factors, **insufficient training data** and the **cross-domain generalization gap**, that could lead to text-to-SQL parsing errors.
- Strategy: Split the Spider training set into two equal-sized subsets by databases and perform cross-validation to synthesize executable SQL queries with errors.

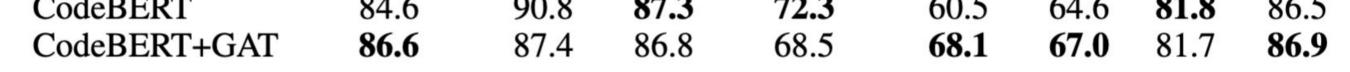
Graph Input Construction

- Natural language question: Dependency parse tree + constituency parse tree.
- SQL query: Abstract syntax tree.

Model Architecture

- Use CodeBERT for contextualized encoding of question and SQL query
- Use Graph attention networks to model structural features of natural language and SQL.

Summary of Experiments and Results


Parser	Model	Positive			Negative				
		Precision	Recall	F1	Precision	Recall	F1	Acc	AUC
SmBoP	SmBoP ^p SmBoP ^s	80.8 81.5	94.5 91.9	86.6 85.7	52.1 56.6	18.9 25.3	23.9 29.4	77.4 76.9	67.0 79.2
	CodeBERT CodeBERT+GAT	82.9 85.0	92.6 90.6	86.7 87.2	60.8 56.7	33.9 44.4	36.3 46.4	78.3 79.8	80.8 81.7
RESDSQL	RESDSQL ^p RESDSQL ^s	79.5 80.1	93.9 95.2	85.5 86.5	55.1 54.2	15.1 16.2	19.7 21.6	75.6 77.5	76.2 76.7
	CodeBERT CodeBERT+GAT	83.1 83.8	94.8 93.8	88.3 88.3	61.2 61.7	32.1 37.0	41.0 45.2	81.0 81.2	80.7 80.7
NatSQL	NatSQL ^{p} NatSQL ^{s}	78.1 77.0	93.2 91.4	84.6 83.0	67.3 62.8	36.1 33.1	45.4 40.3	76.3 74.0	79.2 76.2
	CodeBERT	84.6	90.8	87 3	72.3	60.5	64.6	81.8	86 5

Text-to-SQL Parsers

- SmBoP: A parser featuring a bottom-up decoder guided by relational algebra grammar.
- RESDSQL: A parser using transformer decoder without no grammatical constraints.
- NatSQL: A parser using LSTM decoder guided by context-free grammar.

Parser-Dependent Baselines

- Prediction probability: The sequence probability/score of predicted SQL queries.
- Dropout-based uncertainty: The standard deviation of SQL prediction probabilities/scores

over 10 inference passes with dropout enabled.

Error Detection Results

- On all three parsers, our CodeBERT-based error detector significantly outperforms the two parser-dependent uncertainty metrics, especially on negative samples.
- CodeBERT+GAT further improves the overall error detection performance, especially in recall on incorrect predictions (7.7% absolute improvement on average).

Action Triggering Results

- For answer triggering, compared to parser-dependent metrics, our error detectors allow the system to answer 76% to 175% more questions while maintaining a precision of 95%.
- For interaction triggering, our model brings a 16% to 33% reduction to the number of

interactions required for reaching an accuracy of 95%.