In LLM planning, the discriminator needs to get up to 90% accuracy for tree search to start outperforming simple re-ranking.

When is Tree Search Useful for LLM Planning? It Depends on the Discriminator

Ziru Chen, Michael White, Ray Mooney, Ali Payani, Yu Su, Huan Sun

A Generator-Discriminator Framework of Language Agents

GSM8K[‡]

End-to-end evaluation results (the first row) and average inference time in log scale (the second row) of our simulation experiments with oracle.

Int	trinsic Evalu	uation of Ll	LM-Based [Discriminators	5
/					·

Bird

Spider

Discriminators	~F-uu		0200)				
	Re-ranking	Iter. Correct.	Tree Search	Re-ranking	Iter. Correct.	Tree Search	
CodeLlama-13B GPT-3.5-Turbo CodeLlama-13B-FT	57.5 58.3 <u>61.5</u>	51.7 52.7 51.7	55.5 56.2 56.0	13.3 <u>18.0</u> 14.3	13.3 17.3 13.0	13.3 14.0 13.0	
CodeLlama-13B ^{E} GPT-3.5-Turbo ^{E} CodeLlama-13B-FT ^{E}	65.5 67.0 70.3	62.0 67.5 68.0	62.5 66.0 67.5	21.0 22.3 23.7	24.3 25.0 <u>26.3</u>	22.7 22.7 21.7	
Oracle Simulation ($\tau = 1.0$)	71.0	76.0*	76.2*	27.0	32.7*	29.3	

End-to-end execution accuracy on text-to-SQL parsing.

Error Type	Spie	ler	Bi	rd	GSM8K		
JP	Iter. Correct.	Tree Search	Iter. Correct.	Tree Search	Iter. Correct.	Tree Search	
Discrimination Exploration	29 (78.4%) 8 (21.6%)	17 (60.7%) 11 (39.3%)	9 (52.9%) 8 (47.1%)	12 (50.0%) 12 (50.0%)	30 (62.5%) 18 (37.5%)	6 (66.7%) 3 (33.3%)	
Total	37	28	17	24	48	9	

Error analysis of examples where re-ranking outperforms advanced planning methods.

(1) **Discrimination error**: The discriminator assigns a higher score for wrong programs than correct ones, which is not recoverable by any planning method. (2) **Exploration error**: The planning method has not found the correct program before

INIUUEIS

	Acc	F1	H@1	MRR	Acc	F1	H@1	MRR	Acc	F1	H@1	MRR
CodeLlama-7B	54.0	37.1	56.0	62.3	44.6	46.7	13.0	18.0	48.6	38.7	36.2	46.9
CodeLlama-13B	58.2	37.1	57.0	63.1	49.4	46.7	12.7	18.3	62.2	38.7	41.8	51.0
CodeLlama-7B-FT CodeLlama-13B-FT	62.4 69.7	60.3 67.2	59.5 61.3	64.6 65.7	52.4 62.1	46.7 46.7	14.3 16.0	19.1 20.5	-	-	-	-
GPT-3.5-Turbo	67.0	47.3	59.0	64.3	64.3	35.7	16.0	20.5	72.1	49.1	46.6	54.0
GPT-4-Turbo	76.5	54.9	63.0	66.7	76.2	50.1	20.3	23.0	93.8	91.1	59.8	61.6

Intrinsic evaluation results of naive LLMs' discrimination abilities.

	CodeLlama-13B			GP	т-3.5-т	urbo	CodeLlama-13B-FT		
	Spider	Bird	GSM8K	Spider	Bird	GSM8K	Spider	Bird	
Naive Discriminator	58.2	49.4	62.2	67.0	64.3	72.1	69.7	62.1	
+ Executability Check ++ Execution Result	78.7 83.6	78.8 79.6	64.5 70.6	84.8 90.0	86.3 89.2	73.2 76.5	83.6 88.5	82.2 85.1	
Improvement	25.4	30.2	<u>8.4</u>	23.0	24.9	4.4	18.8	23.0	

Discrimination accuracy of observation-enhanced LLMs. The best performance is

achieved using both kinds of environmental observations.

termination.

Conclusions

- Advanced planning methods, i.e., iterative correction and tree search, demand highly accurate discriminators (up to 90% accuracy) to achieve decent improvements over the simpler method, re-ranking.
- Using environmental feedback, we improve the discrimination accuracy of LLMs. Yet, our end-to-end evaluations suggest they have barely met the need for advanced planning methods to show significant improvements over re-ranking.
- Advanced planning methods may not adequately balance accuracy and efficiency when using LLM-based discriminators. In our experiments, compared to the other two methods, tree search is at least 10–20 times slower but leads to negligible performance gains.